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ANALYTICAL AND EXPERIMENTAL STUDIES ON 

GYROSCOPIC VIBRATION ABSORBERS 

SUMMARY 

A genera l  theoretical a n a l y s i s  is made on t h r e e  d i f f e r e n t  
gyroscopic conf igura t ions  for possible u s e  as v i b r a t i o n  ab- 
sorbers. The a n a l y s i s  provides  for  t w o  degrees of t r a n s l a t i o n a l  
freedom and three degrees of r o t a t i o n a l  freedom for  t h e  absorber,, 
Computer program have been w r i t t e n  which permit calculations of 
(1) n u l l  and n a t u r a l  f requencies  for  a given set of parameters; 
(2) responses i n  t h e  d i r e c t i o n  of e x c i t a t i o n  and orthogonal t o  
it; and (3) responses of t h e  gyro, i,e, angular  oscil lations of 
t h e  gyro  r e s u l t i n g  from v i b r a t i o n s  of t h e  s t r u c t u r e  t o  which 
it is connected, 

Experimental r e s u l t s  have been obtained for t w o  configura- 
t ions  described as "Perissogyroff v i b r a t i o n  absorbers. Comparison 
w i t h  corresponding theoretical results i n d i c a t e  reasonable agree- 
ment. The a n a l y s i s  and experiments confirm t h e  p o s s i b i l i t y  of 
obta in ing  ant i resonance i n  t w o  orthogonal d i r e c t i o n s  simultaneously,  
Details of e l e c t r o n i c  c i r c u i t r y  required t o  synchronize t h e  gyro 
speed w i t h  t h e  e x c i t a t i o n  frequency are presented. 

T h i s  study, wh i l e  confirming t h e  f e a s i b i l i t y  of gyroscopic 
sys t ems  for  u s e  as  Synchronous Vibrat ion Absorbers, has brought 
t o  l i g h t  c e r t a i n  practical problems that  are l i k e l y  t o  be en- 
countered d u r i n g  actual use.  These problem observed d u r i n g  
experimentation p e r t a i n  (1) t o  t h e  condi t ions  of se l f - exc i t ed  
oscillations of "Perissogyro" v i b r a t i o n  absorbers; and (2) t o  
t h e  apparent t r a n s f e r  of energy t o  a yaw motion of t h e  device 
when v i b r a t i o n  i n  orthogonal directions are simultaneously nulled.  
A genera l  d i scuss ion  of these problems together with recommenda- 
t i o n s  fo r  f u r t h e r  research is presented, 

T h i s  report is i n  t w o  parts,  The first part  discusses 
Synchronous Vibrat ion Absorbers. The second part is devoted 
t o  an  a n a l y t i c a l  s t u d y  of p a r a l l e l  absorbers, where t h e  absorber 
consists of a n  undamped mass together w i t h  a damped mass. The 
summary of research  pe r t a in ing  t o  t h e  second part is presented 
sepa ra t e ly  i n  P a r t  2, 
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INTRODUCTION 

The concept of v i b r a t i o n  absorbers  can be traced back 
t o  1909 when H. Frahm invented a simple device which is com- 
monly referred t o  as  t h e  conventional dynamic v i b r a t i o n  ab- 
sorber. In  its simplest  form, the  Frahm absorber consists 
of an a u x i l i a r y  undamped spring-mass system attached t o  the  
v i b r a t i n g  mass a t  a poin t  where it is required t o  react t h e  
e f f e c t i v e  e x c i t a t i o n  force. If t h e  n a t u r a l  frequency of t h e  
absorber mass is chosen t o  be equal  t o  t h e  frequency of t h e  
e x c i t a t i o n  force, then  t h e  main mass does not v i b r a t e  a t  a l l  
and is s a i d  t o  a t t a i n  a n u l l ,  Although Frahm absorbers are 
q u i t e  popular i n  u s e  because of their s impl i c i ty ,  their effec- 
t i v e n e s s  is rather l i m i t e d  t o  s i tuat ions where the  e x c i t a t i o n  
frequency is near ly  constant .  In  fact, t h e  a d d i t i o n  of a n  
absorber mass int roduces another  degree of freedom t o  the  sys-  
t e m  and t h u s  another  resonant condi t ion  which might do more 
harm than  good. In general ,  t h e  e x c i t a t i o n  frequency v a r i e s  
over a range which renders  t h e  conventional absorbers u s e l e s s .  

The purpose of many i n v e s t i g a t i o n s  that  have followed 
s i n c e  the  in t roduc t ion  of Frahm absorbers has been either: 

(1) to invent e n t i r e l y  new and better devices  i n  
t h e  hope of rep lac ing  t h e  conventional absorber, 
or 

(2) t o  improve t h e  e f f e c t i v e n e s s  of the  conventional 
absorber by s u i t a b l e  modification. 

Pendulum absorbers, impact dampers, gyroscopic v i b r a t i o n  
absorbers are b u t  a f e w  of t h e  new devices  t h a t  belong t o  the 
former group. However, t h e  only modif icat ion considered so 
far  i n  t h e  la t ter  group is t h e  a d d i t i o n  of damping t o  t h e  ab- 
sorber mass . 

Part 1 of t h i s  report p re sen t s  the  theoretical a n a l y s i s  
of three conf igura t ions  of gyroscopic v i b r a t i o n  absorbers. 
Also, experimental  r e s u l t s  are included fo r  t w o  configurat ions.  
The purpose of Part 2 of t h i s  report is t o  examine a modifi- 
c a t i o n  of the conventional absorber. Such a modif icat ion 
c o n s i s t s  of adding, i n  parallel, a subs id i a ry  undamped ab- 
sorber mass i n  a d d i t i o n  t o  t h e  damped absorber mass. 
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The idea of u t i l i z i n g  gyroscopic effects which r e s u l t  
i n  a completely i n e r t i a V c o n s e r v a t i v e  means of reacting a 
s inuso ida l  force o r ig ina t ed  i n  t h e  Kaman Vibra t ions  Research 
Group. The invent ion which is patented as  Gyroscopic Vibra t ion  
Absorbers is due  t o  W, Go Flanne l ly l  of t h e  Vibrations Research 
Group  a t  Kaman A i r c r a f t ,  Divis ion of Kaman Corporation, Pre- 
l iminary research  on gyroscopic v i b r a t i o n  absorbers  conducted 
under a con t r ac t  for  t h e  National A ronau t i c s  and Space Admin- 
i s t r a t i o n  has a l ready  been reported 8 , 

The a n a l y s i s  presented i n  Reference 2 established t h e  
unique characteristics of gyroscopic systems used as v i b r a t i o n  
absorbers. For example, it is shown t h a t  gyroscopic v i b r a t i o n  
absorbers  lend themselves t o  synchronizat ion so t h a t  t h e  gyro 
speed may be made t o  adjust  i tself  s u i t a b l y  when t h e  fo rc ing  
frequency va r i e s .  T h i s  obviously is a tremendous advantage 
i n  tha t  these devices  can t h e o r e t i c a l l y  provide a n  i n f i n i t e  
bandwidth so tha t  a n u l l  is always a t t a i n e d  no matter what the  
d r iv ing  frequency is. Admi t t ed ly  more tests and a thorough 
parametr ic  s tudy  are necessary before the  device is developed 
and p u t  t o  actual use ,  However, t h e  p o t e n t i a l s  of gyroscopic 
conf igura t ions  for u s e  as dynamic absorbers appear t o  be very 
promising, Further ,  t h e  p o s s i b i l i t y  of using t w o  absorbers i n  
parallel ,  one damped and t h e  other undamped, has shown tha t  it 
is possible t o  ob ta in  an undamped n u l l  i n  a dynamic absorber 
system which e x h i b i t s  a well-damped peak. These and other 
aspects of gyroscopic v i b r a t i o n  absorbers and p a r a l l e l  damped 
absorbers a r e  examined i n  cons iderable  detail  i n  the  present  
i nves t iga t ion ,  

F igu res  1, 2 and 3 show three of t he  possible conf igura t ions  
of gyroscopic s y s t e m s  t o  which the theory  presented i n  Part 1 
of t h i s  report is applicable. In  Figure 1, t h e  gyro wheel, 
t h e  d r i v e  system, t h e  cross pivots, a l l  rotate i n  unison, 
Such a device is designated as "Perissogyro Vibra t ion  Absorber", 

In  Figure 2 is shown a device which is similar t o  t h e  
conf igura t ion  shown i n  Figure 1 i n  a l l  b u t  one respect, i,e. 
t h e  gyro-wheel i n  t h i s  case can r o t a t e  r e l a t i v e  t o  t h e  d r i v e  
system. Figure 3 shows a conf igura t ion  i n  which t w o  i n e r t i a l  
elements are arranged s u c h  t h a t  t h e i r  p i v o t a l  axes are a t  
r i g h t  angles t o  each other. As i n  Figure 1, the  i n e r t i a l  
elements and t h e  p i v o t a l  axes rotate together. T h i s  device 
is designated here as  "Coriolis Vibrat ion Absorber", 

lrlGyroscopic Vibrat ion Absorber" by William G, Flannelly,  U, S. 

2"Analytical Research on a Synchronous Vibrat ion Absorber" by 

Pa ten t  No. 3,313,163, 11 A p r i l  1967. 

W i l l i a m  G,  F lannel ly  and John C. Wilson, NASA Contractor 
Report CR-338, December 1965. 
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Figure 1. The Perissogyro Vibration Absorber 
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Figure 2.  Alternate Configuration of t h e  
Perissogyro Vibration Absorber 
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Figure 3. Coriolis Vibration Absorber 
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I n  t h i s  report, t h e  governing equat ions  of motion for a l l  
t he  conf igura t ions  are d e r i v e d ,  using Lagrangian technique, The 
approach used i n  t h i s  i nves t iga t ion  is d i f f e r e n t  from t h e  con- 
vent iona l  procedures i n  that  t h e  body a t t i t u d e s  are rekerred 
t o  a f ixed  frame af r e fe rence  as  opposed t o  E u l e r ' s  dekc r ip t ion  
of motion i n  terms of body angular  rates. The a n a l y s i s  is q u i t e  
genera l  and assumes t w o  degrees of t r a n s l a t i o n a l  freedom and 
three degrees of r o t a t i o n a l  freedom for the gyroscopic systems, 
Spring rates are included i n  t h e  a n a l y s i s  for  a l l  p i v o t s  and 
along t h e  translational degrees of freedom, The r e s u l t i n g  
equat ions of motion are a coupled set of nonl inear  ord inary  
d i f f e r e n t i a l  equat ions  for  each gyroscopic conf igura t ion ,  

t he  devices  treated here should be of practical  use ,  reduce 
the  governing equat ions t o  a set of l i n e a r  d i f f e r e n t i a l  equa- 
tions, t h e  solutions for which can be w r i t t e n  r ead i ly .  Numer- 
ical  results, obtained d u r i n g  t h e  study, are presented g raph ica l ly ,  
The r e l a t i v e  merits of the  devices considered here are discussed 
b r i e f l y  

Several s i m p l i f y i n g  assumptions, based on the  fact  that  

The c i r c u i t r y  needed t o  ob ta in  l i n e a r  synchroniza t ion  i n  
Perissogyro Absorbers has been designed, and a br ief  d i scuss ion  
provided i n  t h e  report. 
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ANALYSIS 

"Perissogyro Vibra t ion  Absorber ** 

Figure 4 r ep resen t s  a f ixed  coord ina te  system of r e fe rence  
yf J zf which cannot rotate b u t  can translate i n  t he  X 

direct ions. 4 ' yf 
The coordinate system x b ,  yb, 36 whose o r i g i n  co inc ides  

wi th  t ha t  of t he  f ixed  system is f ixed  t o  t h e  body of t h e  gyro 
and moves w i t h  it, The cen te r  of g rav i ty  of t h e  r i g i d  body is 
assumed to be located a t  "h'' u n i t s  from t h e  o r i g i n  , The final 
pos i t i on  of an element of mass dm  a t  any i n s t a n t  may be expressed 
i n  terms of t h e  f ixed  system coordinates ,  The body as sumes  its 
f i n a l  pos i t i on  a t  i n s t a n t  '%" through a set of three E u l e r - a n g l e  
r o t a t i o n s  given i n  t h e  following sequence: rotat ion $J about zf , 
r o t a t i o n  @ about yl 

4, about )(b (i,e, rotated X a x i s ) ,  In addi t ion ,  t h e  r i g i d  body 
may undergo t r a n s l a t i o n s  i n  t he  Xf and yF directions, 

Representing t h e  matrices of t ransformat ion  associated 
w i t h  the  E u l e r - a n g l e  rotations Cy , 8 and Cp by 9 , @ and E , 
the  coordinates  of a mass particle referred t o  the  f ixed  system 
may be expressed i n  terms of the  body coordinates by t h e  matr ix  
equation, 

(i,e. rotatedy a x i s )  and f i n a l l y  r o t a t i o n  

Where 
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Figure 4. Coordinate Transformation 
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and 

(4 1 - 
Upon mul t ip l i ca t ion  of t h e  matrices 9 0 p, K )' andZ$ 

may be shown t o  be f' F 

? 
(5) 

where sy r ep resen t s  SinW , and so on 
f o r  t h e  other variables e and # It may be noted t h a t  t h e  
displacements Xo and ,'o i n  t h e  %# and 'Q d i r e c t i o n s  have been 
added t o  t h e  appropr i a t e  equat ions of t ransformation,  With t h e  
coordinates  of any mass particle i n  the  r i g i d  body expressed i n  
t,erms of the  f ixed  system coordinates, t h e  v e l o c i t i e s  and 

$, r ep resen t s  Cos y 

f .  +f may be computed, Thus zF 

t 
13 



where 
. .  

. 
d ,  = Cy Ce Y, ’ - S,S,Q 

The expression for the  t o t a l  k i n e t i c  energy may now be 
derived by ca lcu la t  ing 

2 

I 
( 8 )  

The calculations to  o b t a i n T  are rather laborious but s t ra ight -  
forwaird,, 

may be shown to  be (omitting the  subscr ip t s  
pzitting the  d e t a i l s  of a lgebraic  manipulations, 

$ i-v; t q 
On ‘b. yb, zb) 
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The p o t e n t i a l  energy stored i n  t h e  s y s t e m  is assumed to  
be s o l e l y  d u e  t o  t h e  spr ing  rates i n  t h e  p i v o t s  and along t h e  

xf and yf directions, i.e, t h e  con t r ibu t ion  t o  t h e  t o t a l  po- 
t e n t i a l  energy from g r a v i t a t i o n a l  forces is neglected i n  the 
ana lys i s .  Thus, t h e  expression fo r  v may be w r i t t e n  as  

where KQ are t h e  spr ing  r a t e s  i n  t h e  pivots along t h e  B 
and lp d i rec t ions ,  and Kx 
t h e  x, Y directions, kr r ep resen t  the sp r ing  rates along 

The body axes are assumed t o  be along t h e  p r i n c i p a l  axes  
of i n e r t i a  of t h e  r i g i d  body, Thus, i n  calculating t h e  k i n e t i c  
energy i n t e g r a l  from Equation ( 8 ) ,  a l l  t he  product of i n e r t i a  
terms are assumed t o  be i d e n t i c a l l y  zero. 

The governing equations of motion i n  terms of t h e  gener- 
and )'o may now be der ived from t h e  alized coordinates  p, e, 9, 

Lagrangian L, using 

where z* is a genera l ized  coordinate and 4' t he  corresponding 
genera l ized  force,, The r e s u l t i n g  equat ions are a set of coupled 
nonl inear  ordinary d i f f e r e n t i a l  equat ions and are given below, 
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In  t h i s  i n v e s t i g a t i o n  only t h e  l i n e a r i z e d  ve r s ions  of t h e  
set of Equations (12) w i l l  be s tud ied ,  As suggested earlier i n  
t h e  Introduction, it is bel ieved tha t  i n  order for these devices  
t o  be u s e f u l  i n  practice, t h e  oscil lations B and@ should be rea- 
sonably small. Furthermore, t h e  coordinateywill  be dropped as 
a genera l ized  coordinate  and t h e  s p i n  ve loc i ty ,  #‘ , is assumed 
a s  a constant  designated as& , Thus, t h e  r e s u l t i n g  equations 
are a set of coupled l i n e a r  d i f f e r e n t i a l  equations as shown below, 

The above set of equations, although s implif ied consid- 
e rab ly  from its original form (12), cannot be solved easi ly  
because of the  periodic c o e f f i c i e n t s  S i n y  and CosW , Fur ther  
s i m p l i f i c a t i o n  may, however, be accomplished by proper trans- 
formation of coordinates .  Such a t ransformat ion  may be def ined  
as  

The first of Equation (13) may be now mul t ip l i ed  by CY) 
and then  by .Sy t o  o b t a i n  

17 



Simi la r ly  t h e  two equations obtained from t h e  second equa- 
t i o n  of (13) may be shown t o  be 

Adding E q u a t i o n s  (15) and (18) and subtracting Equation 
(16) from (171, t h e  r e s u l t i n g  equations may be shown t o  be 

where t h e  new coordinates 3;7 a n d 3  a r e  def ined  by 

-j- = r, -F+ 
+ In der iv ing  Equations (19) and ( 2 0 ) ,  t h e  i n e r t i a s  and L, have been assumed t o  be equal and the  spring rates ke and 
k 

F i  l l y ,  t h e  l a s t  t w o  equations of (13) may be shown t o  reduce 
t o  

have a lso been assumed t o  be t h e  same, i.e. &=,eT=k 
la 

0 

Thus, t h e  s impl i f i ed  set of l i n e a r i z e d  governing equations 
of motion for  the  Perissogyro conf igura t ion  A, may be w r i t t e n  
as  

18 



/ M3 

c - 0  

Under s teady-state  condit ions,  the  s o l u t i o n s  for 7 ,y 
may be assumed as  

X O ,  y o  iu t- 

i r,,a 
=% 

Subst i tut ion of t h e  assumed form of s o l u t i o n  i n  t h e  set 
of Equations (24) y i e l d s  the  matrix equation - 

1 

' f s c  , c -  

Mh 

(26) 

0 

2 
-(3 

b 

M h  

0 

0 

0 

0 
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From Equation (26 ) ,  it is now possible t o  so lve  for  t h e  
displacements i n  t h e  %f and yf d i r e c t i o n s  for  a given 4% . 
A l s o ,  the  condi t ions necessary t o  ob ta in  a n u l l  (zero displace- 
ment) i n  t h e  X+ d i r e c t i o n  may be derived. 
tions, the effect i n  t he  y f d i r e c t i o n  may be determined, 

Under these condi- 

Equation (26) may be w r i t t e n  as 

where 3 is the  c o e f f i c i e n t  matrix, 1; is t h e  column matr ix  of 
t h e  general ized coordinates and f L  , t h e  column matr ix  of t h e  
general ized forces , 

The n a t u r a l  f requencies  f o r  t h e  s y s t e m  may be obtained by 
s o l v i n g  t h e  c h a r a c t e r i s t i c  equat ion  jp1-0 where IDf r ep resen t s  t he  
determinant of t h e  c o e f f i c i e n t  matrix,  
ca lcu la t ions ,  t h e  express ion  for (DI may be w r i t t e n  as follows: 

Omitting t h e  details  of 
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Simi la r ly  t h e  expressions fo r  %, and yo may be shown t o  
reduce t o  

and 

I t  may be noted f r o m  
along t h e  d i r e c t i o n  can 
though a n u l l  is a t t a i n e d  

Equation (31) tha t  t h e  displacement 
never be zero, Therefore, even 
along t h e  X d i r e c t i o n ,  t h e  sys tem 

may have o s c i l l a t i o n s  i n  t h e  oFthogona1 d i r e c t i o n ,  
poses a l i m i t a t i o n  on t h e  usefu lness  of Perissogyro device. 
However, it is clear from Equation (31) that  the  displacement 

% is l i n e a r l y  r e l a t e d  t o  t h e  speed of the  gyro  wheel. This  
property will be used  later t o  d iscuss  t h e  development of t h e  
so-called D o u b l e  Perisso. 

T h i s  im- 

Equation (30) when equated t o  zero rep resen t s  t h e  n u l l  
equat ion for t h e  system under considerat ion.  

E q u a t i o n s  (28), (30) and (31) are q u i t e  genera l  i n  t ha t  
they include t h e  effects of spr ing  rates i n  t h e  p i v o t s  as  w e l l  
as along' t h e  Q , directions. The s o l u t i o n s  for  these equa- 
t i o n s  have been obtained wi th  t h e  a id  of a d i g i t a l  computer. 
They can, however, be s impl i f i ed  considerably i f  t he  s p r i n g  
rates are assumed as zero and i f  f i=fl . 

Thus, when K - o  = Kx = Ku , and q=fl , t h e  n u l l  equa t ion  
is given by 

2 

and the  equat ion for  t h e  resonant f requencies  may be shown 
t o  reduce t o  

21 



Thus  

An examination of Equation (32) i n d i c a t e s  a n  i n t e r e s t i n g  
c o n t r a s t  w i th  conventional absorbers i n  t ha t  the  n u l l  frequency 
depends on t h e  magnitude of t h e  absorber masso 

Equations (30) and (32) i n d i c a t e  tha t  t h e  n u l l  frequency 
is related t o  t h e  speed of t he  gyro wheel, Such relationships 
are c h a r a c t e r i s t i c  of gyroscopic systems and provide t h e  unique 
advantage by means of which t h e  absorbers  may be synchronized. 
Thus, w i t h  proper synchronizat ion of t h e  angular  v e l o c i t y  of 
the  gyro, t h e  absorber w i l l  produce an  an t i resonance  on the  
s t r u c t u r e  t o  which it is attached, a t  a l l  va lues  of t h e  d r i v i n g  
frequency. Details of such synchronizat ion w i l l  be presented 
i n  t h e  lat ter part  of t h i s  report, 

N u m e r i c a l  results obtained by so lv ing  the  n u l l  and t h e  
c h a r a c t e r i s t i c  equations for t h e  single Perissogyro are pre- 
sen ted  graphica l ly ,  Comparison has been made w i t h  t h e  r e s u l t s  
obtained by experiment. A d i scuss ion  of the  r e s u l t s  and con- 
clusions w i l l  be postponed u n t i l  after t h e  ana lyses  for  t h e  
other conf igura t ions  are presented. 

The preceding a n a l y s i s  has shown tha t  while  t h e  Per i ssogyro  
is capable of producing ant i resonance i n  t h e  d i r e c t i o n  of the  
forcing funct ion,  o s c i l l a t i o n s  w i l l  always occur i n  t h e  ortho- 
gonal d i r e c t i o n ,  These oscillations may be of r e l a t i v e l y  small 
ampli tude b u t  t hey  a r e  never the less  undesirable.  A s  suggested 
earlier, t h e  v i b r a t i o n s  induced i n  t h e  d i r e c t i o n  are l i n e a r l y  
related t o  t h e  gyro angular  ve loc i ty -& T h i s  leads one t o  
be l i eve  t h a t  by superposing t h e  effects of t w o  Per issogyro 
v i b r a t i o n  absorbers, t h e  gyro angular  v e l o c i t i e s  of which are 
opposite t o  one another  ( A,= -4 ), t h e  effect i n  t h e  y 
d i r e c t i o n  may altogether be eliminated, Such a device is 

t w o  Perissogyro v i b r a t i o n  absorbers  attached t o  t h e  v i b r a t i n g  
s t r u c t u r e e  The gyro wheel i n  one of the  sets rotates i n  a 
d i r e c t i o n  opposite t o  tha t  of t h e  other, i,e. &,=-he 0 

The a n a l y s i s  of such a combined s y s t e m  is presented below. 

ted here as "Double Perisso" and consists of a set of 
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Since there are t w o  absorbers attached together t o  the  
v i b r a t i n g  s t r u c t u r e ,  there are, i n  general ,  s i x  genera l ized  
coordinates,  ioe .  81, Bz, 0lJ p,, 30 and yo . It  w i l l  be 
shown below t h a t  these reduce t o  three genera l ized  coordinates 
when t h e  t w o  absorbers are i d e n t i c a l  i n  a l l  respectso 

From t h e  a n a l y s i s  presented before, t h e  governing equat ions  
may be w r i t t e n  r e a d i l y ,  Thus,  t h e  equations for t h e  v a r i a b l e s  

6; and a r e  
& +A2&; (Iz -13) fMh(cyye ’ S y y # )  2J iL (2G-z~) +KB; = 0 

.. 
T +b + d p L  (.KZ--Zx) +Nh [ 2 s ~ . ” . - c y ~ ~ )  44 ;L (2Zx-G) %fa.= O 

8 4=/>2 

l a t te r  equat P on may be subtracted from t h e  r e s u l t i n g  former 

(36) 

As before, i n  order t o  remove the  periodic c o e f f i c i e n t  
from t h e  set of E q u a t i o n s  (36), t h e  6’’ equat ion may be mul -  
t i p l i e d  by G and t h e  p’ equat ion by sp e The r e s u l t i n g  

equat ion t o  o b t a i n  

Similar ly ,  t h e  0, equat ion may be mul t ip l ied  b y s #  and the  $?z 
equat ion by Cy 
may be shown t o  reduce t o  

Addition of t h e  r e s u l t i n g  set of equat ions 

The following d e f i n i t i o n s  of t h e  new coordinates have been 
used i n  d e r i v i n g  the  Equations (37) and (38) 

where 
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The governing equations i n  the  & J  YO direct i o n  may be 
derived assuming t h a t  t h e  fo rc ing  func t ion  #x is equa l ly  shared 
by the  t w o  absorberso Thus, i n  t h e  Jo d i r e c t i o n  

j .. 
f l l ( o  4 M h 7 / , + k ~ X o =  f g L  

corresponding t o  t h e  Equation (22) of the  single Perissogyro, 
i. eo e - *  

4 10 f h h  q/ 7 k)( X O  = AA 
Addition of t h e  above two equat ions  y i e l d s  

In Equation (40)Ginc ludes  t h e  e f f e c t i v e  mass of t h e  s t r u c -  
t u r e  a t  t h e  poin t  of attachment, t h e  mass of t h e  t w o  gyro discs 
and t h e i r  d r i v e  sys tems.  By a similar procedure, t h e  equat ion  
i n  the r& d i r e c t i o n  may be reduced t o  

The governing equat ions for t h e  double perisso may now be 
summarized as follows: 

00 0 * O  

A s s u m i n g  as before s t eady- s t a t e  s o l u t i o n s  fo r  t h e  v a r i a b l e s  
7&)72J G ,  st I xo 
matrix form m y  be shown t o  be: 

and yo , t h e  r e s u l t i n g  equat ions  i n  
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C o m p u t i n g  % from t h e  above matr ix  equation, it may be shown 
t h a t  )I, is i d e n t i c a l l y  zero, Using the  fact  t ha t  )$=o , t h e  
governing equat ions may be reduced t o  a simpler set as  follows: 

Then n, 
may be shown t o  be equal t o  7% from t h e  t h i r d  and f o u r t h  equa- 
t i o n s  of (43), Then t h e  set (43) reduces merely to 

From t h e  las t  equat ion of t h e  set (43), -$=% 

As before, a steady-state s o l u t i o n  y i e l d s  t h e  mat r ix  equa- 
t i o n  (46), i,e, 

From t h e  above equat ion x o / f x  may be shown t o  be 

from which the  n u l l  equat ion may be readi ly  w r i t t e n  as 

The n u l l  equat ion is independent of l i n e a r  spring rates 
and mass r a t i o 3  
n a t u r a l  f requencies  for t h e  system are computed may be shown 
t o  reduce t o  

The characteristic equat ion  from which the  
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Equations (48) and (49) reduce t o  v e r y  s imple expressions 
i f  t h e  sp r ing  rates a r e  set t o  zero, 
frequencies  for t h e  case when t h e  s p r i n g  rates are zero may be 
shown t o  be 

Thus, t h e  n u l l  and n a t u r a l  

2 

and 

/ 

If r / l  is assumed s i m p l y  as 2fl  , f u r t h e r  s i m p l i f i c a t i o n  
results, i. e, 

z;." 
--.__- WJ: = e 

LX o x -  Mh? (52) 
L 

Thus, for t h e  s p e c i a l  case ( i ,e ,  4=2/7> Y = O = k x  ) 

a&/ (53) 

T h i s  r a t i o  is exac t ly  t h e  same a s  t h e  r a t io  obtained fo r  
a s i n g l e  Perisso under t h e  same assumptions. 

It is observed t h a t  t h e  n u l l  frequency equat ion  for t he  
s i n g l e  Per issogyro (for t h e  special case)  co inc ides  w i t h  t h e  
c h a r a c t e r i s t i c  equat ion for  t h e  corresponding double Perisso- 
gyro, 
a s  follows, 

displacement along x direct ion  i s  zero, whi le  t he  displacement 
along)/  d i r e c t i o n  may take place, The force along X d i r e c t i o n  
is reacted by t h e  absorber, and fr = O  

When t h e  double Perissogyro is o s c i l l a t i n g  a t  its n a t u r a l  
frequency, t h e  displacement along x d i r e c t i o n  is t ak ing  place, 
displacement along y d i r e c t i o n  being always zero,, The force 
along ,X d i r e c t i o n  is zero  while  f 
absorber, 
)( and y are interchangeable,  

A simple explanat ion for this coincidence may be offered 

When t h e  n u l l  frequency is a t t a i n e d  i n  t h e  single Perisso, 

0 

is being reacted by t h e  
Thus the governing eq d a t i o n  should be the  same s i n c e  
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The coordinates  11/ andJ may a l s o  be obtained from Equa- 
t i o n  (46) i n  t h e  form 

3 1  i n  the above equat ion is given by t h e  characteristic 
Equation (49) 

Since 7, = B/ cy k- 8 gy 
r, = e/*y - E C y  

t h e n  (55) 

and 

Using the  trigomometric i d e n t i t i e s  for c Y and sv , B/ a n d f i  
may be reduced t o  

i ( L J - J )  t- 
( 5 7 )  

++A)t 

As may be observed from Equations (57) and (58), two wave 
forms whose f requencies  may differ 
t o  o b t a i n  0, and 9 are superposed 

Thus  when reasonably large, t he  so-ca l led  "beat phenomenon" r e s u l t  
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ALTERNATE COW IGURAT ION OF THE 

"PERISSOGYRO VIBRATION ABSORBER" 

Figure 2 shows schematical ly  t he  conf igu ra t ion  whose 
a n a l y s i s  is presented below, The gyro disc i n  t h i s  case 
rotates relative t o  t h e  shaft on which it is mounted so t h a t  
t h e a v e c t o r  is now s i t u a t e d  along t h e  shaf t  perpendicular  t o  
t h e  plane of t h e  gyro wheel. The sha f t  itself is mounted on 
a cross p i v o t  so that  t h e  device may oscil late i n  t w o  direc- 
t ions perpendicular  t o  each other. The motion of t h i s  con- 
f i g u r a t i o n  resembles, i n  many respects, t h e  motion of tops, 

*b 

F i g u r e  5. Coordinate Transformation 

As before, t he  f i n a l  p o s i t i o n  of a mass element s i t u a t e d  
on t h e  gyro wheel may be obtained by success ive  Euler-type ro- 
ta t ions given i n  t h e  following sequence: r o t a t i o n p  about )(f , 
r o t a t i o n  8 about >; ( ioeo  rotated >' a x i s )  and r o t a t i o n  (L' about 
&, (i,e. rotated Z ax i s ) .  The f i x e d  sys tem of coordinates 

The 
d i r e c t i o n s  of t h e  cross p i v o t s  co inc ide  w i t h  t h e  *+ and y+ 
directions, The cen t ro id  of t h e  spinning body may be assumed 
t o  be located a t  h u n i t s  f rom t h e  o r i g i n  0 

#,!, )") Z,f can t r a n s l a t e  i n  t h e  & and ,'f directions, 

The matrices which transform the  coordinates of a mass 
element from t h e  body axes i n t o  those referred t o  t h e  f ixed  
axes may be represented  by ,@ and 9 so that  
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I .  where , 

0 - 5 ,  

(60)  

ii 7 @ =  

q = (v 0 "t" 0 I: I 
- I Y  

and (p , 8 ,  are ro ta t ions  about z b  axes a s  shown 
i n  Figure 5,  

and z 
Upon mul t ip l i ca t ion  of the  matrices @ ,, xt9 yF 

may be shown to be -F I 
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w i t h  the same no ta t ions  as before, 

As. before, t he  procedure would  consist of computing 
' # J  ) l F J  24 t o  de r ive  a n  expression for  t h e  total  k i n e t i c  

energy T o  Omitting a l l  the  intermediate  calculations, 
may be shown t o  reduce to: 

and t h e  p o t e n t i a l  energy \/may be w r i t t e n  as 

In the  above computations, symmetry of t he  spinning body 
i s  assumed t o  e x i s t  so t ha t  t h e  product of i n e r t i a  terms are 
set t o  zero. 
t o  the  axes passing through t h e  o r i g i n  0 

Also, t h e  moments of i n e r t i a  Zz, T. are referred 

The governing equations of motion for t h e  conf igu ra t ion  
may now be w r i t t e n  by forming t h e  Lagrangian func t ion  T-V. 
Again omitt ing a l l  t h e  details  of calculations, t h e  equations 
of motion may be shown t o  be: 

(64) 

The first equat ion i n  t h e  above set may be w r i t t e n  as: 
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0 
0 

Therefore  pf-*@ y is a constant,  i ,e, the t o t a l  angular 
v e l o c i t y  component along the  body c e n t e r l i n e  does not change 
during t h e  motion, T h i s  cond i t ion  may be considered as a n  
i n i t i a l  condi t ion  for t h e  m o t  ion, 

assumed as  small, With @=&, t he  l i n e a r i z e d  equat ions of 
motion may be w r i t t e n  as: 

In order to o b t a i n  solutions,  as before, 8 a n d g  may be 

(66) 

It may be noted t h a t  8) 
general ized coordinates so that no t ransformation of t h e  
na ture  used before i n  t h e  Perissogyro v i b r a t i o n  absorber is 
necessary. Clear ly ,  s u c h  a s i m p l i f i c a t i o n  is t h e  direct re- 
s u l t  of the  cross p i v o t s  being f ixed  i n  t he  )( 

XO and )'. themselves s e r v e  as 

system, pyp and Zf 

$-?'.e +ut To= & e  i w t  , f = $ , e T * u k  , a n d G = f $ @  , 
;w t 

As before, assuming steady-state solutions B=@oe , 
t e n u l l  equat ion and t h e  characeeristic equat ion may be ob- 
ta ined ,  Thus 

2 
-MX &I 0 

c 
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From Equation (67), 9 %may be shown t o  be ( fl is the  
determinant of t h e  c o e f f i c i e n t  matr ix)  : 

(68) 

Thus, t h e  n u l l  equa t ion  when t h e  sp r ing  rates Kb K and /$, 
are i d e n t i c a l l y  zero may be shown t o  reduce to: Y 

Similar ly ,  t h e  characteristic equat ion  may be obtained 
by letting B = o  , i.e. 

S e t t i n g  a l l  t h e  spr ing  rates t o  zero, Equation (70)  may 
be s impl i f ied  as 

so t h a t  the  ra t io  



Le. 

An examination of Figure 4 i n d i c a t e s  that t h e  genera l ized  
coordinates7)T for t h e  Perissogyro a r e  w r i t t e n  i n  terms of the  
angular oscil lations e,? i n  t h e  rotating system of coordinates., 
Since t h e  p i v o t s  i n  t h e  conf igura t ion  shown i n  Figure 2 do not  
rotate, @ and themselves s e r v e  as genera l ized  coordinates i n  
t h i s  caseo Thus, t h e  equations of motion are very similar to 
Equation (24) and t h e  n u l l  Equation (69) for  t h i s  conf igu ra t ion  
co inc ides  w i t h  Equation (32) of t h e  Perissogyro, By v i r f u e  of 
the  t ransformat ion  Equation (21), t he  angular o s c i l l a t o r y  re- 
sponses i n  the  t w o  devices  w i l l ,  however, be d i f f e r e n t ,  In  
terms of n u l l  characteristics, t he  conf igu ra t ion  shown i n  Fig- 
u r e  2 is i d e n t i c a l  t o  t h a t  of Figure 1, Therefore, fu r the r  
d iscuss ion  w i l l  be confined t o  t h e  Perissogyro v i b r a t i o n  ab- 
s orber only 
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CORIOLIS VIBRATION ABSORBER 

The a n a l y s i s  presented below pertains t o  t h e  conf igu ra t ion  
shown i n  F igure  3, Two i n e r t i a l  elements are arranged i n  such  
a manner that  t h e i r  p i v o t a l  axes  are a t  r i g h t  ang le s  t o  each 
other, A s  i n  t h e  case of t h e  conf igu ra t ion  shown i n  F igure  1, 
t h e  e n t i r e  sys tem rotates i n  unison, The device  is designated 
as "Coriolis Vibra t ion  Absorber", It is evident  that  t he  
governing equations of motion for t h e  Coriolis Vibra t ion  Ab- 
sorber can be obtained d i r e c t l y  from those of t h e  "Perissogyro 
Vibra t ion  Absorber", w i t h  m i r i o r  modifications, Since t h e  la t ter  
r ep resen t s  t he  case of a n  i n e r t i a l  element which can have angular 
o s c i l l a t i o n s  about t w o  axes, it is only necessary to  suppress 
one of these freedoms of angular oscillations, in order t o  de- 
scribe one element of t h e  Coriolis absorber, Thus for  each 
element, the  governing l i n e a r  equations of motion can be w r i t t e n  
d i r e c t l y  from t h e  set of E q u a t i o n s  (12) as follows: 

where 8; r ep resen t s  t h e  amplitude of angular  o s c i l l a t i o n  of the  
i n e r t i a l  element, In t h e  above equation, t h e  coord ina tes  X'O, Yo 
represent  as before, t h e  amplitude of v i b r a t i o n s  along theX8 

and )' axes and are common t o  the  e n t i r e  s y s t e m ,  f 
S i m i l a r l y  t h e  equations of motion corresponding t o  t h e  co- 

ordinates s, and for each element, may be w r i t t e n  as 

and 

E q u a t i o n s  (74) and (75)  for each element m y  be combined i n  
the  following manner t o  represent  a l l  t h e  elements, i oeo ,  

+ KO = f x  
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As before, i n  order t o  reduce t h e  governing equat ions of 
motion i n t o  a set of l i n e a r  d i f f e r e n t i a l  equat ions  w i t h  con- 
s t a n t  c o e f f i c i e n t s ,  each of t h e  set of E q u a t i o n s  (73) is mul- 
t i p l i e d  by S;, ; and t h e  r e s u l t i n g  set is added t o  o b t a i n  

A similar equat ion is obtained by mult iplying Equation (73) by 
and adding the r e s u l t i n g  set t o  o b t a i n  

Equations (761, (77), (78) and (79) represent  t h e  governing 
equations of motion for n i n e r t i a l  elements connected together 
a t  a common l o c a t i o n  on a v i b r a t i n g  s t r u c t u r e ,  &,W, - - - a  d e f i n e  
t h e  r e l a t i v e  o r i e n t a t i o n s  of t h e  elements a t  a l l  t i m e s .  

The periodic c o e f f i c i e n t s  i n  t h e  above set of equat ions 
may be removed by s u i t a b l e  t ransformation of coordinates ,  Such 
a t ransformation is shown below: 
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mitt ing the details  of algebraic manipulation, Equa- 
t i o n s  (78)  and (79) may be w r i t t e n  i n  terms of t h e  trans- 
formed general ized coordinates 2,) &,- and &,) & as follows, 
I n  t h e  following ly/s,qz=..*-.=,y and ~ , = h 2 = - - . . .  = h  and ,$ -& =...,. = x, 
Z& zr* = *-.** , 14Lz&u . ' * * *  

Considering only t w o  i n e r t i a l  elements, as shown i n  Figure 3, 

E q u a t i o n s  (81) and (82) reiuce t o  
fi '=. and Vz= Y+Vz With these values  for p, a n d p a  

Simi la r ly ,  Equat ions (76 )  and (77)  reduce t o  
s DO 

M & + M $ ~ f &  X,=fx 

and 

Assuming  steady-state oscillations, t h e  n u l l  and char- 
acteristic equat ions are derived i n  a manner similar t o  that 
shown for the  "Perissogyro Vibra t ion  Absorber'' and are pre- 
sented below. 

The equat ion  t h a t  determines the n u l l  f requencies  for  
t h e  Coriolis absorber  is 
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and t h e  equation that  determines the  natural frequencies  is 
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EXPERIWNTAL SETUP AND PROCEDURES 

The o v e r a l l  purpose of t h e  experimentat ion was t o  o b t a i n  
reasonable  confirmation of t h e  theoretical development of t h e  
Perissogyro Vibra t ion  Absorber. I n  order t o  accomplish t h i s ,  
a n  absorber was designed u s i n g  a Hooke's Jo in t ,  one end of 
which is connected t o  a synchronous motor and t h e  other t o  a 
circular aluminum p la te  a t  one end of a steel rod, 
such  as t h e  weights, dimensions, etc, of t h e s i n g l e  Per isso-  
gyro are l isted i n  Table 1. 
of t h e  s e t u p  are shown i n  F igures  6 and 7 ,  
and t h e  d i r e c t i o n  of r o t a t i o n  of the  motor could be c o n t r o l l e d  
a t  either 1800 r p m  or 3600 r p m ,  The e n t i r e  absorber was then  
mounted on t w o  sha f t s  which rotate i n  opposite directions i n  
order t o  remove the  effect of f r i c t i o n  forces along t h e  direc- 
t i o n  of o s c i l l a t i o n ,  Plunger springs were mounted l a t e r a l l y  
t o  provide la teral  spring rate, 

Details 

The schematic and a photograph 
The speed ( r p m )  

A 50-pound shaker was used  t o  e x c i t e  t h e  system. Two 
MB v e l o c i t y  pickups were mounted on the  base of the Perisso- 
gyro  i n  t h e  d i r e c t i o n  of e x c i t a t i o n  and perpendicular  t o  it. 
The o u t p u t s  of t h e  pickups were fed t o  an oscilloscope from 
which t h e  r e s u l t s  were recorded manually. On some tests, 
actual traces of t h e  o u t p u t  were obtained t o  fac i l i t a te  d is -  
cuss ion  of r e s u l t s ,  

I n  order t o  compare the  theoretical r e s u l t s  w i t h  t h e  
experimental r e s u l t s ,  it was necessary t o  determine t h e  actual 
spr ing  rate i n  t h e  lateral d i r ec t ion .  T h i s  was measured by 
means of a s imple experiment, t h e  r e s u l t s  of which are shown 
i n  Figure 8. T h i s  load-displacement curve being s l i g h t l y  non- 
l i n e a r ,  t he  spr ing  ra te  w a s  approximated t o  be around 600 
pounds/inch, 

In  order t o  experimentally determine t h e  v a r i a t i o n  of 
an t i resonant  frequency wi th  t h e  speed of t h e  gyro wheel, t h e  
e x c i t a t i o n  frequency was set a t  a par t icular  value and t h e  
motor running a t  36 0 r p m  was turned off,  As t h e  motor con- 
t inued  to decelerate, t h e  actual instantaneous rpm was read 
on an  e l e c t r o n i c  counter  when t h e  n u l l  w a s  located on t h e  
oscilloscope, T h i s  procedure was repeated fo r  var ious  va lues  
of t h e  e x c i t a t i o n  frequency, A comparison of t h e  null-rpm 
characteristics predicted by theory  ( w i t h  K y  as parameter) 
w i t h  those obtained from experiment is presented i n  Figure 9. 
It may be noted tha t  t he  l a t te r  results approximate c l o s e l y  
t o  t h e  former a t  K 6 0 0  # / k k  , Y 
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VIBRATION PICK U P S  

PLUNGER 
SPRING 

SYNCHRONOUS 

CROSS PIVOT 

GYRO D I S C  

Figure 6 .  Schematic of t h e  Experimental Setup 
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Figure 7, Photograph of the  Experimental 
Setup of the Perissogyro 
Vibration Absorber 
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One of t h e  problems t h a t  w a s  encountered d u r i n g  ex- 
per imentat ion p e r t a i n s  t o  s e l f - e x c i t e d  oscil lations of the  
Perissogyro, These o s c i l l a t i o n s  were a t  times q u i t e  v i o l e n t  
and repeated t r i a l s  were necessary before reasonably satis- 
factory condi t ions  were obtained, The l i n e a r  theo ry  does not 
suggest poss ib i l i t i es  of any such  apparent ly  unstable  con- 
d i t i o n s .  Fu r the r  detailed experimental  and theoretical in- 
v e s t i g a t i o n s  w o u l d  be necessary t o  o b t a i n  a f u l l y  s a t i s f a c t o r y  
explana t ion  of t h i s  problem. 

The photograph of t h e  s e t u p  for testing t h e  double Perisso- 
gyro v i b r a t i o n  absorber is shovn i n  Figure 10, Two single 
Perissogyros are mounted s i d e  by side and r i g i d l y  connected 
together by means of a connecting plate, 
cedures w e r e  similar t o  those adopted i n  t h e  tests on single 
Perissogyro v i b r a t i o n  absorber, 

The experimental  pro- 

Pre l imina ry  tests were performed u s i n g  t h e  same dimensions 
as  those of t h e  single Perissogyro device, T h i s  r e su l t ed  i n  
se l f - exc i t ed  o s c i l l a t i o n s  of t h e  gyro disc, which were con- 
sidered unsatisfactory t o  o b t a i n  reasonable data, The length 
of t h e  s h a f t  w a s  reduced and t h e  aluminum gyro disc was replaced 
by a steel plate. The details  of the  double Perissogyro including 
t h e  weights, etc. are tabulated i n  Table 2. These modifications 
improved t h e  condi t ions  considerably, and therefore, t h e  data 
presented here were obtained for t h e  double Per issogyro con- 
f i g u r a t i o n  whose dimensions are as shown i n  Table 2, 

t h e  double Perissogyro was tha t  of an angular o s c i l l a t i o n  of 
t h e  e n t i r e  device about a v e r t i c a l  a x i s  of symmetry, Thus, p a r t  
of t h e  energy was transferred t o  t h i s  rotational motion. It may 
be recalled t h a t  i n  the theoretical analysis ,  t h i s  a d d i t i o n a l  
degree of freedom has not been considered, The experimental  
data seems t o  be considerably influenced by t h i s  undes i rab le  
o s c f l l a t i o n .  Prel iminary attempts t o  overcome t h i s  phenomenon 
have fa i led,  T h i s  phenomenon resu l ted  i n  producing beats so 
that  a rather laborious data reduct ion  w a s  necessary t o  obtain 
t h e  amplitudes and f requencies  of o s c i l l a t i o n  of t h e  double 
Perissogyro, 

A major problem t h a t  was encountered du r ing  the tests on 

Sone of t h e  traces obtained during the  tests are presented 
i n  Figures  11 and 12, B e c a u s e  of the presence of angular 
o s c i l l a t i o n s  about a v e r t i c a l  a x i s  referred to earlier, nu l l -  
rpm characteristics of t h e  double Perissogyro could not be 
obtained,  
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Figure 10. Photograph of t h e  Experimental Setup 
of t h e  Double Perissogyro Vibration 
Absorber 
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TABLE 1 

Experimental Model of the S ing le  Perissogyro Absorber 

Gyro D i s c  

Thickness of the d i s c  

Weight of gyro d i s c  

Length of steel rod 

Weight of motor assembly 

Weight of steel rod 

Weight of universal joint 

Weight of top p l a t e  

Weight of connecting rod 

Weight of pick-ups 

Weight of shaker armature 

Aluminum Plate  8" D i a ,  

1/2" 

2 ,44#  

5 - 1/2 " 

24,2#  

, 625# 

, 24# 

1 .45#  

1.50# 

1 .60#  

2,00# 
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TABLE 2 

Experimental Model for the  Double Perissogyro Absorber 

Gyro D i s c  

Thickness of the  d i s c  

Weight of gyro d i s c  

Length of steel rod 

Weight of motor assembly 

Weight of two steel rods 

Weight of t w o  universals  

Weight of top p l a t e  

S t e e l  Plate 8'' Dia. 

1/2 9 9  

6.9# 

3.75" 

48.4# 

a7w 

48# 

2 90# 
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RESULTS AND DISCUSS ION 

Figures  13 and 14 show t h e  p r i n c i p a l  features of t h e  Perisso- 
gyro Vibrat ion Absorber, 
obtained by d iv id ing  the  measured o u t p u t  by corresponding va lues  
obtained by shaking t h e  Perissogyro absorber  w i t h  t h e  motor turned  
off .  The l a t t e r  data is termed X p  and i n d i c a t e s  t h e  response of 
t he  absorber as  a pendulum, There is reasonable  agreement between 
t h e  t h e o r e t i c a l  and experimental  r e s u l t s ,  

Dimensionless va lues  of amplitude are 

An examination of F igu re  3 i n d i c a t e s  t ha t  t h e  theoretical 
null-rpm c u r v e s  have two branches, one corresponding to a lower 
n u l l  and t h e  other corresponding t o  a higher  n u l l ,  
equat ion for  t h e  s i n g l e  Perissogyro Vibra t ion  Absorber wi th  k ' = U = k x  
Le. 

From t h e  n u l l  

It  can be shown t h a t  there e x i s t  t w o  n u l l  f requencies  for eachd, 
r e s u l t i n g  i n  two d i s t i n c t  branches fo r  t h e  null-rpm curves. The 
lower branches approach asymptot ical ly  (i.e. as  A** ), t he  
v a l u e  K y / A  whereas t h e  upper branches approach asymptot ical ly  

beginning va lues  for the  lower and upper branches r e spec t ive ly .  
An examination of Equation (89) i n d i c a t e s  t ha t  a s  kr+ , the  
n u l l  f requencies  approach CR. &/ZX 
t h e  n u l l  f requencies  for t h e  "Double Perissogyro". T h i s  feature 
can be observed from Figure 9, where t h e  null-rpm curves for  t he  
"Single Perissogyro" approach t h e  corresponding curve for t h e  
"Double Per issogyro" a s  k y +  a, T h i s  is appropr i a t e  i n  view 
of the  fact t h a t  a "Double Perissogyro" has always a n u l l  i n  
t h e  l a t e r a l  d i r e c t i o n ;  a condi t ion  which corresponds t o  having 
i n f i n i t e  la teral  spring rate, 

, which r e p r e s e n t s  also 

From Figures  13 and 14 it  is evident  tha t  experimental  
results predict only t h e  lower n u l l s ,  T h i s  feature w a s  ob- 
served i n  a l l  t h e  experiments a l though a tendency t o  reach t h e  
higher n u l l s  was not iceable .  Such a tendency can be seen  by 
examining t h e  o u t p u t  trace presented i n  Figure 15. 

50 



0 5 

i 
I 

i 
I 

i 
t '  

I 

I 

\ 

I I ALUMINUM DISC 

I h =  5.5" 

I 
i 
I 

j . .  . i 
; i 

Ex per i m en t al 

I I 

10 15 2 0  25 

FREQUENCY (C.P.S.1 

Figure 13, Theoretical  and Experimental Response Curves (1800 rpm) 

51 



5 

0 
0 5 I O  

I 

ALUMINUM DISC 

h = 5 .5"  

8=3600 RPM 
- 

Ky .= 600 

20 25 

FREQUENCY (C.R S.) 

F i g u r e  14. Theoretical and Experimental Response Curves (3600 rpm) 

52 



53 



Figures  16 and 17 show t h e  p r i n c i p a l  features of the  Double 
Perissogyro v i b r a t i o n  absorber. As before, dimensionless va lues  
( X / % p  
w i t h  corresponding va lues  obtained by experiment. 
Single  Perissogyro, t he  Double Perissogyro provides  a single nu l l .  
Because of the  problem referred t o  earlier i n  t h e  report, repeated 
tests were necessary t o  o b t a i n  experimental  results on t h e  Double  
Perissogyro, R e s u l t s  of f o u r  such tests are plotted i n  Figures 
16 and 17. The genera l  t r e n d  shown by these experimental  obser- 
va t ions  conform nearly t o  those suggested by theory,  
could not be determined accurately because of t h e  inf luence  of 
angular  o s c i l l a t i o n s  of t h e  e n t i r e  device (yaw motion) which re- 
s u l t e d  i n  a bea t ing  phenomenon, Limi ta t ions  of t i m e  imposed on 
t h i s  project did not permit more thorough experimental  work. 

) are plotted against t h e  forcing f requencies  and compared 
Unlike the 

A c t u a l  n u l l s  

As observed earlier, one of the  unique Characteristics of a 
Gyroscopic Vibrat ion Absorber is the synchroniza t ion  possibil i t ies 
it provides. For t h e  Single Perissogyro, t h e  null-rpm character- 
istics are l i n e a r  only over  a l imi t ed  range of gyro speeds as may 
be seen  from Figure 9, For t h e  Double  Perissogyro, however, t he  
null-rpm relationship is l i n e a r  for any range of gyro speeds. 
Thus a Doub le  Perissogyro v i b r a t i o n  absorber lends  itself t o  
l i n e a r  synchronization, i n  a d d i t i o n  t o  providing n u l l s  i n  orthog- 
onal directions, Details p e r t a i n i n g  t o  such synchronizat ion are 
presented a t  t h e  end of t h i s  report and inc lude  t h e  schematic of 
the  necessary e l e c t r o n i c  c i r c u i t r y .  

Some of t h e  quest ions t h a t  remain unanswered p e r t a i n  t o  (1) 
se l f - exc i t ed  oscillations t h a t  seem t o  s ta r t  and persist i n  t h e  
gyroscopes under no input  condi t ions  for  c e r t a i n  physical  param- 
eters of both the Single  and Double Perissogyro Vibra t ion  Absor- 
bers; (2) t h e  beat phenomenon that seem t o  be induced a t  c e r t a i n  
forcing f requencies  on the  Double Perissogyro v i b r a t i o n  absorber, 
The answers t o  q u e s t i o n s  such as  above and an  understanding of 
the  inf luences  of  var ious  parameters such as mass ratios, spr ing  
rates, gyro speeds, i n e r t i a s ,  etc, would have t o  be obtained by 
means of a n  ex tens ive  experimental program. Fur ther  theoretical 
research should  include a r o t a t i o n  coordinate for t h e  Double  
Per issogyro conf igura t  ion  i n  a d d i t  ion  t o  including effects of 
damping. 

Preliminary s t u d i e s  and calculations made on t h e  "Coriolis 
Vibrat ion Absorber" ind ica ted  n u l l  and n a t u r a l  f requencies  so 
closely spaced t h a t  t h e  device may be of questionable practical 
value. However, detailed parametr ic  s t u d i e s  would  be warranted 
before d e f i n i t e  conclusions can be drawn, 
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GYROSPEED SYNCHRONIZATION FOR "PERISSOGYRO VIBRATION ABSORBER" 

In  t h i s  sect ion, details  pe r t a in ing  t o  synchronizing gyro- 
speeds are discussed, The genera l  problem of synchronizat ion 
may be stated as follows. 

Given a r e l a t i o n s h i p  A = f ('%) where 4 and (3, r ep resen t  
gyrospeed and n u l l  frequency respec t ive ly ,  it is required to 
design a n  e l e c t r o n i c  c i r c u i t r y  which would automatically change 
the gyrospeed as soon as the  e x c i t a t i o n  frequency changes, 

In  what follows the  func t ion  f ( Q n  w i l l  be assumed as l i n e a r ,  
i,e, -/2 I cdn where C is a constant  wh l ch can be computed once 
the  dimensions of t h e  absorber a r e  known, 

A simplif ied block diagram of t h e  proposed gyro speed synch- 
r o n i z a t i o n  sys tem is shown i n  F igu re  18, The r e fe rence  shaft  A 
and the con t ro l l ed  shaf t  B each have a gear/transducer combination 
t o  detect sha f t  speed, A magnetic pick-up (transducer) placed i n  
close proximity t o  t h e  teeth of a ferro-magnetic gear would be 
employed to genera te  an  electrical  s i g n a l  whose frequency is pro- 
portional t o  t h e  shaf t  speed. Since t h e  transducers are rate 
s e n s i t i v e ,  the  o u t p u t  s i g n a l  w i l l  vary i n  amplitude as w e l l  as  
frequency w i t h  shaf t  speed. S igna l  amplitude is also affected 
by gear tooth shape and tooth-to-transducer clearance.  However, 
t h e  speed c o n t r o l  c i r c u i t r y  is only s e n s i t i v e  t o  the  f requencies  
of t h e  t w o  incoming s igna l s .  Rela t ive  frequency d e t e c t i o n  is 
achieved by comparing t h e  length  of t i m e  required by each trans- 
ducer s igna l  t o  complete one cycle. T h i s  comparison is con- 
t inuous ly  repeated and averaged t o  produce a s i g n a l  whose magnitude 
a t  any given t i m e  is propor t iona l  t o  the  d i f f e r e n c e  between the  
t w o  f requencies ,  The sys tem operates as a closed loop speed reg- 
u la t ing  servomechanism w i t h  short t e r m  proportional c o n t r o l  p l u s  
i n t e g r a l  compensation. 

Amplif iers  A 1  and A2 i n  Figure 18 amplify and amplitude 
l i m i t  t h e i r  r e spec t ive  t ransducer  signals which are then  coupled 
t o  the  frequency d e t e c t i o n  c i rcu i t s ,  The logic c i r c u i t r y  fo r  
each channel is i d e n t i c a l  and is composed of t w o  clocked f l i p -  
f lops which operate on t h e  master/slave p r inc ip l e .  The master/ 
slave f l ip - f lops  allows information t o  e n t e r  t he  master while 
t h e  t r i gge r  is high and transfers t o  t h e  s l a v e  when t h e  tr igger 
goes l o w ,  Since ope ra t ion  depends only on vol tage  l eve l s ,  any 
sort  of wave shape may be used  as t r igger  signals.  
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Assume f l ip-f lops FF1 and FF2 i n i t i a l l y  i n  t h e  clear mode 
w i t h  the  set o u t p u t s  low and t h e  clear o u t p u t s  high, The high 
clear o u t p u t  from FF2 is applied t o  t h e  set input  of FF1, how- 
ever, a s suming  there is no t r igger  present  FF1 cannot be set, 
The first ampli tude l imi ted  p u l s e  from A 1  is simultaneously ap- 
plied t o  t h e  t r igger  inpu t s  of FF1 and FF2, When t h i s  t r i g g e r  
is high, t h e  master of FF1 is set b u t  the o u t p u t  does not change 
s ta te  u n t i l  t h e  s l a v e  is set on t h e  t r a i l i n g  edge of the  tr igger 
pulse ,  When the  first t r i g g e r  p u l s e  is completed, t he  set input  
of FF1 is transferred t o  t h e  set o u t p u t  and t h e  clear o u t p u t  o f  
FF1 becomes l o w ,  Since there w a s  no set input  t o  FF2, t h e  t r i g g e r  
p u l s e  had no effect on t h e  o u t p u t  of FF2, After t h e  first t r igger  
pulse ,  there is a high set input  t o  FF2 from t h e  set o u t p u t  of FFI. 

The second p u l s e  from A 1  cannot change the  cond i t ion  of FF1 
s i n c e  it has been previously set, however, FF2 can now be set s i n c e  
it has a high set input ,  Once both f l ip - f lops  have been set, f u r -  
t h e r  input p u l s e s  can have no affect on them u n t i l  t h e y  are cleared, 
Since it took two consecut ive input  pulses  t o  set both fl ip-flops,  
the  t i m e  between the  setting of FF1 and FF2 is equal t o  one input  
s igna l  cycle or period, Gate 1 o u t p u t  is high only when FF1 is 
set and FF2 is clear, therefore, t h i s  p u l s e  is equal i n  length 
t o  one input s i g n a l  period, The logic c i r c u i t r y  for the  B shaft  
s i g n a l  performs i n  t h e  same manner. The o u t p u t  pu lses  from Gates 
1 and 2 are sub t r ac t ed  i n  summing ampl i f ie r  A 3  and averaged to  
produce a s i g n a l  whose value is proportional t o  t h e  d i f f e r e n c e  
i n  speed between shaf t s  A and 8, 

When a l l  fou r  f l i p - f lops  have been set (one cycle each of 
A and B have been sampled), Gate 3 has a high on both inpu t s  and 
enables  t h e  single shot f l i p - f lop  t o  clear a l l  f o u r  f l ip-f lops 
through t h e i r  respective "direct-clear" inputs.  The direct-clear 
input (CD ) over r ides  any normal synchronous set or clear s igna l s ,  
t h u s  prevent ing simultaneous set and clear commands from pro- 
ducing unre l iab le  o u t p u t s .  Once a l l  f l ip-f lops have been reset 
(cleared), t h e  sampling process is aga in  repeated and t h e  periods 
for s ignals  A and B are compared on a one-to-one basis t o  produce 
a n  average error s igna l  for  t h e  motor c o n t r o l  c i r c u i t ,  

The synchronizat ion c i r c u i t r y  is of t h e  proportional p l u s  
i n t e g r a l  type.  Proportional con t ro l  provides  the  short t e r m  
s t a b i l i t y  required to cope w i t h  shaf t  speed t r a n s i e n t s ,  however, 
p ropor t iona l  only c o n t r o l  requires a f i n i t e  error t o  maintain 
se rvo  motor d r ive ,  I n t e g r a l  c o n t r o l  compensates for t h i s  error 
by a d j u s t i n g  its o u t p u t  to maintain shaf t  speed wi th  zero error 
under s teady  s ta te  condi t ions,  

It is possible t o  have s h a f t  B operate at any m u l t i p l e  of 
shaf t  A ' s  speed. T h i s  can be achieved i n  t w o  ways. 
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The first method is t o  have the  number of gear teeth on 
each shaf t  d i f f e r e n t  so t h a t  t he  pick-up frequency w i l l  be 
i d e n t i c a l  a t  t h e  desired speed ratios,  e,g. i f  there were twice 
as many teeth on Gear B, shaf t  B would only have t o  rotate ha l f  
as fas t  as shaf t  A t o  produce zero error s igna l  (same o u t p u t  
frequency), The second method is t o  bias t h e  error signal a t  
amplifier A 3  t o  produce zero o u t p u t  a t  t h e  desired speed or fre- 
quency d i f f e r e n t i a l ;  t h i s  could be accomplished with t h e  "Speed 
M u l t i p l i e r  ADJ" shown i n  Figure 18, 

The coarse speed adjustment shown i n  Figure 18 allows t h e  
speed of s h a f t  B to be preset to its approximate opera t ing  value,  
The error de tec t ion  c i rcui ts  opera te  as  a f i n e  tuning and t r i m  
the  speed of shaft B t o  t h e  desired m u l t i p l e  of shaf t  A,, 
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The a n a l y s i s  of paral le l  damped dynamic v i b r a t i o n  absorb- 
ers is presented. The sys tem considered is e s s e n t i a l l y  a mod- 
i f i c a t i o n  of the  conventional damped v i b r a t i o n  absorber and 
c o n s i s t s  of adding, i n  p a r a l l e l ,  a s u b s i d i a r y  undamped absorber 
mass i n  add i t ion  t o  t h e  damped absorber mass, The a n a l y s i s  
clearly shows tha t  it is possible t o  ob ta in  an  undamped a n t i -  
resonance i n  a dynamic absorber  s y s t e m  which e x h i b i t s  a w e l l -  
damped resonance. While t h e  bandwidth of f requencies  between 
t h e  damped peaks is not s i g n i f i c a n t l y  increased, t h e  amplitudes 
of t h e  main mass are considerably smaller wi th in  the opera t iona l  
range of the  absorber ,  The damped absorber mass and t h e  main 
mass a t t a i n  n u l l  simultaneously so t h a t  t h e  v ib ra to ry  f o r c e  is 
transmitted t o  t h e  undamped absorber,  

Numerical r e s u l t s  are presented for t h e  special case when 
the  absorber masses have t h e  same magnitude, 
have been considered: 

Two cases of tuning 

(1) when the  absorber masses are tuned t o  t h e  frequency 
of t h e  main mass, and 

(2) when t h e  absorber masses are tuned t o  t h e  so-called 
favorable  tuning frequency. 

Comparison of t he  results wi th  those of t h e  convent ional  
absorber  i nd ica t e s  t h a t  t h e  parallel damped dynamic v i b r a t i o n  
absorber  has d e f i n i t e  advantages over t h e  conventional damped 
v ib ra t ion  absorber,  
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INTRODUCTION 

The conventional dynamic v i b r a t i o n  absorber, first proposed 
by Frahm i n  1909, is still  q u i t e  w i d e l y  u s e d  i n  p r a c t i c e  because 
of its s i m p l i c i t y .  The main drawback of t he  Frahm Absorber l ies 
i n  t h e  narrow bandwidth of e x c i t a t i o n  f requencies  wi th in  which 
t h e  absorber is e f f e c t i v e .  The purpose of many i n v e s t i g a t i o n s  
that  have followed s i n c e  t h e  in t roduc t ion  of Frahm absorbers  has 
been either: 

(1) 

(2) 

t o  improve the  e f f e c t i v e n e s s  of the  conventional 
absorber by su i tab le  modification, or 
t o  invent e n t i r e l y  d i f f e r e n t  and better devices  i n  
t h e  hope of replacing the conventional absorber,, 

Gyroscopic v i b r a t i o n  absorbers and impact dampers are b u t  a f e w  
of t he  new devices tha t  belong t o  t h e  l a t t e r  group, However, 
the  only modif icat ion considered so f a r  i n  t h e  former group is 
the  a d d i t i o n  of damping t o  t h e  absorber mass. The purpose of 
t h i s  report is t o  examine a f u r t h e r  modif icat ion of t h e  conven- 
t ional absorber. Such a modif icat ion c o n s i s t s  of adding, i n  
parallel, a subs id i a ry  undamped absorber mass i n  a d d i t i o n  t o  t h e  
damped absorber mass. The system considered is shown i n  Figure 1. 

The a n a l y s i s  t h a t  follows c o n s i s t s  mainly of: 

(1) 

(2) 

t h e  d e r i v a t i o n  of t h e  governing equat ions of 
motion, and 
d e r i v a t i o n  of t h e  cond i t ion  for  t h e  ampli tude of 
t h e  main mass to be independent of t h e  damping 
ra t io  0 

The lat ter condi t ion  provides t h e  f requencies  a t  which t h e  
amplitudes of t h e  main mass are independent of t he  damping 

ratio i n t e r e s  
the  same v a l u e ) ,  t h e  so-called favorable  tuning ( ioe.  t h e  tuning 
frequency a t  which the  absolute va lue  of the  amplitudes independ- 
e n t  ofC/c, is the  same) has been determined i n  t h e  f o r m  of a 
simple equation, Under t h i s  favorable  tuning, t he  mass r a t io  
requi red  to provide the  greatest spread between t h e  f requencies  
is determined, A l s o ,  t h e  equat ion which provides  t h e  opt imum 
damping r a t io  (ice. the  r a t io  C/c, 
response c u r v e  is zero) has been derived. 

In  addi t ion ,  for t h e  par t icu lar  case of p r a c t i c a l  
i,e. when t h e  absorber  masses and the  s p r i n g s  have 

a t  which t h e  slope of t h e  

Some of the  equat ions i n  t h e  a n a l y s i s  are r a t h e r  lengthy 
and forbid hand computation. Therefore, the e n t i r e  problem 
has been programmed on t h e  computer. Numer ica l  results ob- 
t a ined  are presented g raph ica l ly  i n  dimensionless form. 
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ANALYSIS 

The s y s t e m  under cons idera t ion  w i t h  t h e  forces a c t i n g  on 
each mass is shown i n  Figures  1 and 2. The main mass is assumed 
t o  be subjected t o  t h e  a c t i o n  of a periodic force f 
s teady  s ta te  response is considered,, 

Only 
0 

and X 
3 

For t h e  s t eady- s t a t e  response, the  s o l u t i o n s  X,, xL 
may be assumed as 

L a t  xi=. 
iwt 

iwt 
x, = xZoe 

x,= X3$ 

S u b s t i t u t i n g  (2) i n  (l), a set  of simultaneous equations in the 
u ~ n o w n s  X I ,  xz  andxJ may be obtained. These equations may 
be represented i n  t he  form of a symmetric matr ix  as follows: 

- (k-3 +Ci w ) 

1 

0 

0 
- -f! 
(3) 
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Figure 1 .  Para l l e l  Vibration Absorber 

Figure 2 ,  Forces Acting on Each Mass 
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Where k 1 k z J  ~3 are sp r ing  rates, 7 1 ) ~  I m3 are t h e  

may be shown t o  be of t h e  form: 
masses and C is t h e  damping constant .  Solving for X, from (3) 

"/l% 

X I  - - 
+ O  c\+ LD, 

In  order t o  represent  t h e  ampl i tude  i n  dimensionless form, t h e  
numerator i n  Equation (4) may be divided 
nator by&kzk3 ; t h e  r e s u l t i n g  

t h e  denomi- 
may be w r i t t e n  

as follows: 

(6) 

'' (Static displacement of main mass under 
t h e  force fb 

may be represented  i n  dimensionless form. 
i n  Equation (6) b y D  
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and 

It can be e a s i l y  shown that is independent of t h e  
damping rat  io  provided (hi&)= ,t t he  equations 

A, I), 1L F,C, = 0 (9) 

may be used t o  o b t a i n  t h e  va lues  of 
of the  main mass a r e  independent of the  damping ra t io  Cp Sub- 
s t i t u t i n g  t h e  expressions for &, P,, C, 
( 6 )  i n  Equation (9), t h e  r e s u l t i n g  equations may be shown t o  be: 

a t  which t h e  amplitudes 

and 3, from Equation 

Omitting t h e  minor detai ls  of ca l cu la t ion ,  t h e  above equat ion 
may be shown t o  reduce t o  (when t h e  minus s i g n  is chosen): 

This is a t r i v i a l ,  b u t  t r u e ,  equation. According t o  
Equation (ll), the  v ib ra to ry  displacement of t h e  main mass, X, , 
is independent of damping when 3 S O ,  i.e. when the  forcing 
frequency is zero or when/,=? , i,e. when t h e  fo rc ing  frequency 
is t h e  same as t h e  n a t u r a l  frequency of t h e  undamped absorber 
mass 0 

Thus, t h e  required non- t r iv i a l  equat ion is obtained by 
choosing t h e  p l u s  s i g n  i n  Equation (lo), and may be shown to  
be: 

2 
Equation (12) is a cubic  i n  A! , , it may be solved t o  ob ta in  t h e  v a l u e s  of E a t  which 

X I  %,sT is independent of c, 
am fg.. l i t u d e s  of t h e  main mass may be computed from Equation ( 6 ) o  

and for  given va lues  of p2 
Using these va lues  of p ,  t h e  
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Although f u r t h e r  a n a l y s i s  may proceed w i t h  a l l  t h e  param- 
eters i n  t h e i r  most gene ra l  form, it is found t h a t  cons iderable  
s i m p l i f i c a t i o n  i n  computation r e s u l t s  i f  t h e  absorber masses 
and t h e  corresponding s p r i n g  rates are assumed t o  be equal, 
Also, such an assumption leads t o  one case  of practical  in- 
terest, With ,& r/u3s,U and ,&=& , Equation (12) reduces t o  

With a l i t t l e  algebraic manipulation, Equation (13) may be shown 
t o  be: 

S i n c e ? = ?  corresponds t o  the nu l l ,  t h e  dimensionless f requencies ,  

given by 
, a t  which the amplitudes Xf%,sT are independent of damping are 

2 
Equation (15) is a quadratic i n  8 and provides  the  t w o  required 
values  of 2 (say 3, 
t h e  corresponding v a l u e s  of t h e  ratio%/%,,,, may be computed from 
a s i m p l i f i e d  equat ion obtained from Equation ( 6 ) ,  i.e. 

and 2z ). Using t h e  v a l u e s  of 3, and g L  , 

f"- g2. 
(16) 

Equation (16) is obtained from t h e  genera l  express ion  ( 6 )  +' = h , and by l e t t i n g  by making t h e  assumptions ,& = /u3 E /u. , 
c v = O  . The la t te r  assumption is v a l i d  because at 7, and itz , 

is independent of 6,  e fdxm 
The a m p l i t u d e s  at  2, and , as computed from Equation (16) 

a re ,  i n  general ,  not equal ,  In  order t o  avoid t h e  necess i ty  t o  
refer t o  two d i f f e r e n t  ampl i tudes  and make comparisons a t  every 
stage, t he  absolute va lue  of these amplitudes may be forced t o  
be equal a t  3, and e Because  it is not apparent whether t he  
ampli tudes a t  3 a n 3  ?=are of t he  same s ign ,  t h e  genera l  require- 
ment may be wrikten as: 
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The s o l u t i o n  of Equation (17) provides t h e  v a l u e  of t he  
tuning ( f ) such  tha t  t h e  absolute amplitude of t h e  main mass 
a t  is the  same as t h a t  a t  3, , 7, and 2% are t h e  magnitudes 
of h e  dimensionless frequency ( forc ing  frequency/natural  fre- 
quency of t h e  main mass) a t  which t h e  amplitudes of t h e  main mass 
a r e  independent of damping i n  t h e  sys t em,  

Omitting t h e  de ta i l s  of ca l cu la t ion ,  t h e  requi red  equat ions  
may be shown t o  be 

w i t h  t h e  + s i g n  and 

w i t h  t he  - s i g n ,  

Clearly,  on ly  one of these equat ions is v a l i d ,  The v a l i d  
equat ion may be found as follows. 

The roots 2, and 7, of t h e  quadra t i c  Equation (15) s a t i s f y  
t h e  condi t ions  

2 2 4 4 5  z f 2  3 2. 
3, + 92 = 2.4- 

* z  c 2 -fZ 
71% - 2 - t - 4  

and 

(20 )  

Equation (18) may be w r i t t e n  as: 

S u b s t i t u t i o n  of (20 )  i n  (21) l eads  t o  

Equation (22) is sat isf ied only when t h e  absorbers have an un- 
coupled n a t u r a l  frequency of zero (g=o ), which is a t r i v i a l  
condi t ion,  Thus, t h e  amplitudes (at 3, and 3% ) are opposite 
i n  sign, and the  tuning f requi red  t o  make them e q u a l  is obtained 
from Equation (19) w r i t t e n  i n  t h e  form shown below: 
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Z &  
As  before, s u b s t i t u t i n g  t h e  expressions for  71 + &  and 

9r"S,' from Equation (20)  i n  Equation (23), t h e  r e s u l t i n g  
equat ion may be shown to be: 

r 2  

The required tuning, t he  so-ca l led  favorable  tuning, which 
g ives  equal  amplitudes can be calculated from Equation (24), 

Under t h e  ' 'favorable tuning" condition, t h e  va lues  of 8 and 
fz may be computed from Equation (14), I n  Equation (141, 

however, when f is prescribed as "favorable tuning", dl 
provides  the  greatest d i f f e r e n c e  between 2) and fz , 
been done as follows: 

only,  It  would be of i n t e r e s t  t o  determine t h e  mass ra  
This  has 

g2 5 

2 4  4 
( 2 5 )  

e 2 

, 8 and 7. may be 
G S u b s t i t u t i n g  t h e  form o f f =  

shown t o  be / "2f 

* 
s .  g'-$ = 

k - (g, 'Jl)  may be shown t o  be 
2 

Se t t ing  Equation (28) t o  zero, t h e  required value o f p  
may be shown t o  be ,366, i,eo 36,6% of t h e  main mass is re- 
qu i r ed  fo r  t h e  absorber mass i n  order t o  a t t a i n  a maximum 
bandwidth ( d l - J z i  
8'7: it s clear t h a t  ,42=.344 provides t h e  cond i t ion  

for  
too high and p r o h i b i t i v e  to be of any practical u s e o  

Examining t h e  second d e r i v a t i v e  of 

3'92" ' t o  be a maximum, However, such a mass r a t i o  is 
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A s i m i l a r  expression can be derived for the  case when f =/ . 
For t h i s  case: 

lGZG7 
(=r+4 (29) 

However 

From Equation (30), it is clear t h a t  there is no p o s i t i v e  
va lue  of ,&. for which t h e  equat ion is sat isf ied.  A l s o ,  t h e  sec- 
ond d e r i v a t i v e  of g,%-gp i n  t h i s  case is pos i t i ve ,  i nd ica t ing  
a minimum condi t ion  rather than  a maximum condi t ion.  Therefore 

i n  t h i s  case inc reases  continuously a s p  is increased 
and oes not a t t a i n  a n  abso lu te  maximum wi th in  t he  meaningful 
range of /u ( O L / L C 5 * 5 )  e 

g,=p= 
In d i s c u s s i n g  t h e  problem of damped v i b r a t i o n  absorbers, it 

is cus tomary  t o  determine "optimum amplitude" and t h e  correspond- 
ing "optimum damping". The "optimum damping" is defined as the  
damping required t o  o b t a i n  a zero slope of t h e  response curve a t  2, or & . The r e s u l t i n  amplitude a t  9, or yr is termed "optimum 

comments t h a t  t h e  c a l c u l a t i o n s  involved i n  comput ing t h e  "optimum 
damping" are "long and tedious". For t h e  system described i n  t h i s  
report, t h e  c a l c u l a t i o n s  are much longer and more tedious. The 
opt imum C, ( C/~JoPT 

amplitude". Den Hartog 5 , i n  h i s  a n a l y s i s  of a damped absorber, 

is determined from the  express  ion  

The c a l c u l a t i o n s  shown below are fo r  t h e  case when ,d~=fl~=,& 
and f = h  . d l  and Yz are, as  before, t h e  va lues  of 2 a t  which 
Xj/&sT is independent of C, 

where 
3 

B, = 2c, 9 (f'-f) 

3 
Den Hartog, "Mechanical Vibrations", Th i rd  Edi t ion,  M c G r a w - H i l l  
Book Company, 1947, 
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where t h e  primes i n d i c a t e  d e r i v a t i v e s  with respect t o  g o  

I n  t h e  following, t he  terms appearing i n  (35) w i l l  be listed 
i n  order, i n  their  f i n a l  form, and a l l  detai ls  of c a l c u l a t i o n  
w i l l  be omitted, 

Subs t i t u t ing  these expressions i n  Equation (35), an  equa- 
t i o n  for  op t imum damping r a t io  ( Cp p p ~  ) can be obtained i n  
i n  t h e  following form: 

c, = 
@PT) (40 1 

7 5  



XI are  known functions of F and %- and y= - 
is, i n  general, d i f f e r e n t  from that  

where h, , hs , h3 , h+ 
from Equation (42) a t  7, 
a t  
the  required optimum damping ratio, ,  

computed a t  e i t h e r  a, or gt The value of QoF~) obtained %7- 

An average value of G ( o p ~ )  is therefore proposed a s  
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DISCUSSION AND CONCLUSIONS 

The responses of t h e  main mass and t h e  absorber masses 
have been represented  g raph ica l ly  as  func t ions  of t h e  fre- 
quency r a t io  w i t h  damping ratioC, a s  parameter, A l s o ,  t h e  
phase angles  of t h e  main mass shown are computed and represented  
graphica l ly ,  The responses for f S/ and f=+ are-shown sepa ra t e ly ,  

In  order t o  judge t h e  e f f e c t i v e n e s s  of the  parallel v i b r a t i o n  
absorber, t h e  responses of t h e  conventional absorber are compared 
wi th  those of t h e  corresponding paral le l  v i b r a t i o n  absorber. The 
corresponding paral le l  v i b r a t i o n  absorber is defined as t h e  p a r a l l e l  
v i b r a t i o n  absorber whose absorber masses are each equal  t o  one-half 
of t h e  absorber mass of t h e  conventional absorber, 

An examination of Figure 3 shows t h e  p r i n c i p a l  f e a t u r e s  of 
the  compaPison. The in t roduc t ion  of an undamped absorber mass, 
i n  a d d i t i o n  t o  t h e  damped absorber mass, has made it possible t o  
o b t a i n  an undamped an t i resonance  i n  a dynamic absorber  system which 
exhibits a well-damped resonanceo T h i s  is an  expected r e s u l t  and 
is decidedly a n  advantage. However, t he  amplitudes inc rease  r a t h e r  
sharp ly  for small changes i n  t he  frequency r a t io  p ,  t h u s  r e t a i n i n g  
t h e  disadvantages of t h e  conventional damped absorbers. Therefore, 
both the  absorbers permit only very small t o l e rances  i n  t h e  change 
of t h e  frequency r a t i o ?  Nevertheless, t h e  para l le l  absorber 
appears t o  be supe r io r  t o  t h e  conventional damped absorber i f  a 
comparison is made between t h e  response curves fo r  a damping ra t io  
such as  CP = *32 The conventional absorber  has, fo r  t h i s  ra t io  
of CY , p r o h i b i t i v e l y  large amplitudes w i t h i n  the  ope ra t iona l  range 
of the  v i b r a t i o n  absorber. A l s o ,  t h e  characteristic feature of 
t h e  response c u r v e  of the conventional absorber  changes s i g n i f  i- 
c a n t l y  i n  t ha t  t h e  t w o  smaller peaks for a l o w  damping ra t io  s u c h  
as  for  C, tend t o  merge t o  a s ing le ,  b u t  larger, peak when C, 
is increased. On t he  other hand, i n  t h e  case of t h e  para l le l  
absorber, t he  characteristic features (i.e. t w o  damped peaks and 
a n u l l )  remain i n t a c t  when t h e  damping is changed and the  amp- 
l i t u d e s  wi th in  t h e  ope ra t iona l  range of f requencies  are con- 
s ide rab ly  smaller for higher  damping ratios,  Even for  l o w  damping 
ratios, it may be observed that the amplitudes i n  t h e  narrow range 
between the  peaks, p, arid (a, , are smaller, 

I n  view of the  fact t h a t  t h e  above advantages are obtain-  
able by merely ass igning  one-half of the  absorber mass of t h e  
conventional absorber as  the  undamped mass of the  paral le l  ab- 
sorber, t h e  device is obviously preferable, 
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t h a t  
Examination of the  responses 
t h e  main mass and t h e  damped 

of t he  absorber masses shows 
mass a t t a i n  an t i resonance  
t h e  v i b r a t o r y  force d i r e c t l y  simultaneously, t h u s  t r ansmi t t i ng  

t o  the undamped absorber mass. 
used i n  t h e  design of t h e  sp r ings  for  t h e  absorber masses such 
tha t  t h e  stresses induced are not  too excessive.  

These response curves may be 

Figure 8 r e p r e s e n t s  t h e  v a r i a t i o n s  of "opt imum damping" 
r a t i o  as a func t ion  of t h e  mass ra t io ,  C lea r ly ,  t h e  (Cr)m- 
required does not vary s i g n i f i c a n t l y  from t h e  corresponding 

for  t h e  conventional absorber . CCr) opr 

The procedures used t o  determine the  'qoptimum amplitude'' 
and "optimum damping" conform t o  those presented i n  Reference 3. 
The most favorable response curve (of t h e  main mass) is there- 
fore assumed t o  be t h e  one which has a zero slope a t  the  higher 
of t h e  t w o  po in ts ,  P or Q. Accordingly, the best possible 
"resonant amplitude'' a t  opt imum damping is the  o r d i n a t e  a t  t h a t  
point .  However, it appears t h a t  there can be s e v e r a l  d i f f e r e n t  
ways i n  which opt imiza t ion  can be def ined,  For example, a tun ing  
condi t ion  and a desired damping may be found such tha t  t h e  second 
peak (i.e. a t  Q) may be made as small as possible, S imi l a r ly ,  it 
may be desirable t o  have t h e  first peak (i.e. a t  P) as small as 
possible w i t h o u t  any r e s t r i c t i o n  imposed on t h e  second peak. 
Such requirements may be of practical importance although the 
tuning condi t ion  obtained is not considered "favorable" according 
t o  the  d e f i n i t i o n  given earlier. The condi t ions  stated above 
are, nevertheless ,  ach ievable  w i t h  some j u d i c i o u s  d i s t r i b u t i o n  

( ins tead  of simply making each of them equal t o  one- 
mass of t h e  equiva len t  conventional absorber). 

These and other aspects of t h e  paral le l  v i b r a t i o n  absorber 
are recommended for  f u r t h e r  research. 
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